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We study the Josephson current through a resonant level coupled to a vibration mode �local Holstein model�
in the adiabatic limit of low oscillator frequency. A semiclassical theory is then appropriate and allows us to
consider the oscillator dynamics within the Born-Oppenheimer approximation for arbitrary electron-vibration
couplings. The resulting Fokker-Planck equation has been solved in the most relevant underdamped limit and
yields the oscillator distribution function and the Josephson current. Remarkably, a transition from single-well
to double-well behavior of the effective oscillator potential surface is possible and can be tuned by variation in
the superconducting phase difference. The Josephson current is shown to be only weakly affected by the
electron-vibration coupling due to strong phonon localization near the bottom of the potential surface.

DOI: 10.1103/PhysRevB.81.104508 PACS number�s�: 74.50.�r, 74.78.Na, 73.63.�b

I. INTRODUCTION

The field of molecular electronics continues to pose inter-
esting scientific questions that are also of applied relevance.
Many aspects of charge transport through junctions contain-
ing a single molecule have already been clarified,1,2 and rela-
tively simple theoretical models3–17 can often capture the es-
sential physics in such devices; see also Ref. 18 for a recent
review. To quote just a few important experimental works,
single-molecule transport has been studied using different
organic molecules,19 fullerenes,20–22 carbon nanotubes,23,24

and single hydrogen molecules between Pt leads.25 When
two superconducting �instead of normal-state� electrodes
with a phase difference � are attached to the molecule, the
Josephson effect26 implies that an equilibrium current I���
can flow through the molecular junction. The impressive ex-
perimental control over supercurrents through molecular
junctions achieved recently �see, for instance, Ref. 27 and
references therein� has been accompanied by first theoretical
studies investigating the effects of vibrational or conforma-
tional molecular modes on the supercurrent. In particular, the
effect of just one harmonic vibration mode coupled to a
single-level quantum dot �“local Holstein model”� has been
considered in the superconducting version. Analytical results
have been obtained via perturbation theory in the molecule-
to-lead tunnel couplings28 or in the electron-vibration
coupling.29,30 Other works have modeled the conformational
mode as a two-level system.31

In this work, we consider the superconducting local Hol-
stein model describing a single spin-degenerate electronic
state coupled to the vibration mode and to two superconduct-
ing electrodes with phase difference �. We focus on the
adiabatic regime, where the oscillator dynamics is slow on
characteristic timescales of the electronic motion, and typi-
cally many oscillator quanta are excited under strong
electron-vibration coupling. As shown below, this situation is
analogous to a heavy Brownian particle in a fast non-Ohmic
fermionic environment.36 The oscillator distribution function
and the Josephson current can then be calculated by using a
semiclassical description of the oscillator dynamics. Thereby,
a nonperturbative treatment of the electron-vibration cou-
pling is possible and controlled calculations can be per-

formed in so far unexplored parameter regimes. Similar ideas
have been employed before in the description of nonequilib-
rium normal-state transport for this model,9,16 which are here
generalized to the superconducting case. We address the
equilibrium case �no bias voltage�, where the phase differ-
ence � is the relevant control parameter coupling to the os-
cillator’s motion. Note that typical superconducting gap
scales are of the order of ��1 meV, and in many experi-
mentally studied cases,32–35 the relevant vibrational energy
scale is significantly smaller than � and our theory is directly
applicable.

The structure of this paper is as follows. In Sec. II, we
discuss the model and introduce our semiclassical approach.
In Sec. III, we then consider the oscillator dynamics within
the Born-Oppenheimer approximation, and we derive the
Fokker-Planck equation for the distribution function in en-
ergy space. The approach is employed to obtain the results
presented in Sec. IV, followed by a discussion and some
conclusions in Sec. V. We mostly use units where e=�=kB
=1.

II. MODEL AND SEMICLASSICAL APPROACH

A. Model

We start by describing a minimal model of a molecular
quantum dot sandwiched by two superconducting leads.
Similar to the normal-state case,18 this model can capture
essential aspects of the relevant physics in such devices.
Writing the full Hamiltonian H=H0+HT+Hleads, the term H0
describes the isolated “molecule,” including the vibration
mode and its coupling to the electronic state. HT refers to the
electronic tunneling Hamiltonian connecting the molecular
level to the superconducting electrodes, and Hleads describes
the s-wave BCS superconducting leads with phase difference
�. In this work, we only discuss the equilibrium case where
both leads have the same chemical potential. Concerning H0,
we assume that only one spin-degenerate molecular elec-
tronic state is relevant, with �bare� energy �0. The corre-
sponding fermion operator is d� for spin projection �= ↑ ,↓.
The molecular dot is supposed to also host a dominant vibra-
tion mode of frequency �, and we retain only this quantum
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oscillator mode with dimensionless canonically conjugate
operators x and p. Following standard arguments,18 usually
the most important coupling �	� to d� is contained in a dot
Hamiltonian of the form

H0 = ��0 + 	x��
�
�d�

†d� −
1

2
� +
�

2
�p2 + x2� . �1�

In this representation, the oscillator acts as a charge parity
detector, since it is displaced by the dot charge n̂=��d�

†d�
only for even n= �0,2�. It is convenient to employ the
Nambu formalism, where fermion operators are combined in
the Nambu spinors d= �d↑ ,d↓

†�T and 
 jk= �
 jk,↑ ,
 j�−k�,↓
† �T for

electrons in the left or right lead �j=L /R� with momentum k.
The leads are then described by a pair of BCS Hamiltonians,

Hleads = �
j,k

 jk

† ��k�z + ��x�
 jk, �2�

with normal-state dispersion �k and BCS gap � �taken real
and positive�; for simplicity, we consider identical supercon-
ductors. The standard Pauli matrices �x,y,z and �0
=diag�1,1� act in Nambu space. Tunneling of electrons be-
tween the dot and the leads corresponds to

HT = �
j=L,R=+,−

�
k

t0
 jk
† �ze

�i�z�/4d + H.c., �3�

where we assume that both dot-to-lead tunnel couplings t0
are equal and k independent; the generalization to asymmet-
ric cases is straightforward. The superconducting phase dif-
ference � enters via the phase factor dressing the tunnel
matrix element. Finally, we define the hybridization energy
�=�0	t0	2, where �0=2�k���k� is the normal density of
states in the leads.

We next employ the real-time path integral technique1,36

to derive an effective action for the oscillator alone, i.e., we
integrate out all electronic degrees of freedom. Although we
study an equilibrium problem, it is technically easier to ob-
tain the semiclassical limit from the real-time Keldysh
technique.1 We thus introduce the standard forward �back-
ward� branch of the Keldysh contour, with oscillator trajec-
tories x1�t� 
x2�t��. These define the classical trajectory x�t�
= �x1+x2� /2 and the quantum part y�t�=x1−x2. The path-
integral expression for the time evolution operator of the
system then takes the form

Z =� DxDyei�S0+Se�, �4�

where the action of the uncoupled oscillator is

S0 = −� dty��−1ẍ +�x� , �5�

and Se is an influence functional which results from tracing
out all fermionic variables,1,36

Se = − i Tr ln�Ǧ−1 −
	

2
�zy�

= − i Tr lnǦ−1 + i�
n=1

�
�	/2�n

n
Tr�Ǧ�zy�n. �6�

The trace operation “Tr” extends over Nambu, Keldysh, and
time �or energy� space, while the symbols “TrN” �“TrK”� used
below will refer to a trace over Nambu �Keldysh� space only.

Ǧ denotes the Keldysh Green’s function �GF� of the dot for

given classical trajectory �y=0�; the check notation �ˇ� indi-
cates the 2�2 Keldysh structure. In terms of the Nambu

spinors d, Ǧ�t1 , t2�=−iTC
d�t1�d†�t2���, where TC is the
time-ordering operator along the Keldysh contour. It is con-

venient to express the GF Ǧ�t1 , t2�� Ǧ�t ;�� with t
= �t1+ t2� /2 and �= t1− t2 in the Wigner �“mixed”� represen-
tation. We will also frequently employ the Fourier trans-

formed expression, Ǧ�t ;��= �2�−1�d�e−i��Ǧ�t ;��.
According to Eq. �1�, for a given classical trajectory �x�t��

of the oscillator, the dot Keldysh GF can be obtained from
the Dyson equation

Ǧ−1 = Ǧ0
−1 − 	x�t��z�̌z, �7�

which formally represents an infinite-dimensional matrix
equation in time �or energy� space and in Nambu-Keldysh
space. The �inverse� GF in the absence of the electron-
vibration coupling is

Ǧ0
−1 = �i�t − �0�z��̌z − �̌ , �8�

where the Pauli matrices �̌x,y,z act in Keldysh space. The

self-energy �̌ originates from the integration over the lead
fermions. In frequency representation, the retarded and ad-
vanced components �in Nambu space� are given by1,26

�R/A��� = − i�
��0 − � cos��/2��x

���� i0+�2 − �2
, �9�

while the Keldysh component follows from the standard
equilibrium relation,

�K��� = f���
�R��� − �A����, f��� = tanh��/2T� .

�10�

These components determine the Keldysh matrix structure
according to ��=� denotes the upper/lower branch of the
Keldysh contour�

�̌������ =
1

2
� d�

2
e−i��
��R + ���A + ����K���� . �11�

Similarly, the Keldysh GF Ǧ can be decomposed into the
retarded 
GR�, advanced 
GA�, and Keldysh 
GK� compo-
nents. Note that so far our expressions are exact.

B. Semiclassical approach

In this paper, our main interest concerns the adiabatic case
of a slow oscillator, where � is the smallest physical fre-
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quency scale. In this limit, the kinetic term in S0 favors small
quantum fluctuations y�t�, and a semiclassical approach ex-
panding in �y�t�� becomes possible. �This approximation can
also be justified in the limit of high temperatures.� For the
normal case ��=0�, such an approach has been worked out
in detail for nonequilibrium transport in Refs. 9 and 16. It
constitutes a controlled approximation for ��� and arbi-
trary 	. In the superconducting case, we instead require �
�min�� ,��.

Within a semiclassical approach, we thus evaluate the ac-
tion Se up to second order in the quantum amplitude y�t�
while keeping the full nonlinear dependence on the classical
trajectory x�t�,

Se = − i Tr lnǦ−1 + Se
�1� + Se

�2� + O�y3� . �12�

The first-order term is Se
�1�=�dtF�t�y�t�, with the total force

exerted by electrons on the oscillator

F�t� =
i	

2
TrN
GK�t,t��z� = 	
1 − n̂�t��� . �13�

Using the Dyson equation �8�, some algebra yields

F�t� = Fe�t� − �t

dt���t,t��ẋ�t�� , �14�

with the time-local part of the force,

Fe�t� =
i	

2
TrN
G0

K�t,t��z� + ��t,t�x�t� . �15�

Here the equal-time value of the damping kernel is

��t,t� =
i	2

2
� dt� TrN,K�Ǧ0�t − t���̌z�zǦ�t�,t��z� . �16�

The second term in Eq. �14� describes retarded damping,
where the Wigner representation of the real-valued damping
kernel ��t , t�� with t� t� is obtained by solving the equation

�1

2
�t + i����t;�� =

	2

4 �
s=�

s� d��

2
TrN
A0�t;�� + s�/2�

��zG
K�t;�� − s�/2��z − G0

K

��t;�� + s�/2��zA�t;�� − s�/2��z� .

�17�

Here A= i�GR−GA� is the full spectral function of the dot
�including the electron-vibration coupling�, while A0 refers to
the corresponding 	=0 case. The second-order noise term is
from Eq. �6� given by

Se
�2� =

i

2
� dtdt�y�t�K�t,t��y�t�� , �18�

where the fluctuation kernel has the Wigner representation

K�t;�� =
	2

4
� d��

2
TrN

A + iGK��t;�� + �/2�

� �z
A − iGK��t;�� − �/2��z� . �19�

C. Weak coupling limit: Fluctuation-dissipation theorem

So far no approximations have been made in treating
Se

�1,2�, and the above expressions are exact. Before we ad-
dress the adiabatic regime of small �, it is instructive to
briefly consider the case of small 	 but arbitrary �. In that

case, the full GF Ǧ entering Eqs. �16�, �17�, and �19� can be

replaced by the free GF Ǧ0. Taking into account that
G0

K���= f���
G0
R���−G0

A����, cf. Eq. �10�, we find from Eq.
�17�

���� =
	2

2�
� d��

2

f��� + �/2� − f��� − �/2��

� TrN
A0��� + �/2��zA0��� − �/2��z� . �20�

Some algebra shows that the fluctuation kernel K��� in Eq.
�19� can also be expressed in terms of ����,

K��� = �
nB��� + 1����� , �21�

where nB���= �e�/T−1�−1 is the Bose-Einstein function.
Equation �21� constitutes the well-known fluctuation-

dissipation theorem36 for weak electron-vibration coupling
and provides a consistency check for our formalism. In the
normal state ��=0�, the damping kernel ���� is often as-
sumed to be a smooth function of �, which is then approxi-
mated by a constant, �0=���=0�, according to Eq. �20�.
Under this approximation, the damping constant entering the
equation of motion is just �0 /2, as follows from the resulting
first-order action, Se

�1�=�dty
Fe− ��0 /2�ẋ�. In the high-
temperature limit, the fluctuation kernel then describes white
noise, K���=�0T����. In the superconducting case ���0�,
however, the above kernels may not exhibit the assumed
spectral smoothness. The presence of Andreev bound states
is known to cause singular behavior of the dot spectral func-
tion A�t ;�� in the subgap region 	�	��. We will therefore
take into account the electron damping and fluctuation ef-
fects on the oscillator’s motion throughout the whole spectral
range. Furthermore, we now go beyond the weak-coupling
limit and consider a nonperturbative theory in the electron-
vibration coupling 	.

III. ADIABATIC REGIME

A. Born-Oppenheimer approximation

Next we turn to the oscillator dynamics in the adiabatic
regime realized for ��min
� ,Ea����, where Ea��� is the
Andreev-level energy �see below�. In particular, we require
���, which also implies that normal-state results do not
follow from the expressions below by sending �→0. Since
the oscillator dynamics is now much slower than the elec-
tronic motion, we can invoke the Born-Oppenheimer �BO�
approximation.36 The dot GF Ǧ is thereby approximated by

the adiabatic Green’s function Ǧ�t ;�� whose inverse for
given t ,� follows from the Dyson equation

Ǧ−1�t;�� = Ǧ0
−1��� − 	�z�̌zx�t� , �22�

which now is a simple 4�4 matrix �in Keldysh-Nambu

space� relation. �We often denote Ǧ
x�t� ;��= Ǧ�t ;��.� This
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GF describes a noninteracting dot whose time-dependent en-
ergy level ��t�=�0+	x�t� is determined by the instantaneous
displacement x=x�t� of the oscillator. Equation �22� is for-

mally obtained from the Dyson equation �7� for Ǧ�t1 , t2� in
the mixed representation �with t1,2= t�� /2�,

Ǧ�t;�� = Ǧ0��� + 	� dt�Ǧ0�t1 − t���̌z�z

� 
x�t� + �t� − t�ẋ�t� + . . .�

� �1 −
t1 − t�

2
�t + . . .�Ǧ�t;t� − t2� .

Noting that �t corresponds to ẋ�x, all derivative terms are of
order O�ẋ� and should therefore be neglected within the BO
approximation. Using the analogy to an effectively noninter-
acting quantum dot level, the retarded component of the
adiabatic GF follows in the form29

GR�x;�� =
��1 + ��� + ��x��z + ��� cos��/2��x

D�x;��
, �23�

where we introduce the auxiliary quantity

�� =
i�

��� + i0+�2 − �2
�24�

and the denominator is given by

D�x;�� = �2�1 + ���2 − �2�x� − ��
2�2 cos2��/2� . �25�

The resulting adiabatic spectral function A�x ;��=Aa+Ac
receives contributions from Andreev levels �Aa, for 	�	���
and from quasiparticle continuum states �Ac, for 	�	���.
The Andreev-level spectral function is given by

Aa�x;�� =
2

��D�x;��
��	�	 − Ea�x��

� 
��1 + ��� + ��x��z + ��� cos��/2��x� ,

�26�

where the �-dependent Andreev-level energy Ea�x�� 
0,��
is a non-negative root of the equation D�x ;Ea�=0. The other
components of the adiabatic GF then follow from GA

= 
GR�† and the equilibrium relation

GK�t;�� = − if���A
x�t�;�� . �27�

Next we address the corresponding adiabatic expressions for
the damping and fluctuation kernels. Since the damping ker-
nel in Eq. �14� is multiplied by ẋ, it is sufficient to replace

Ǧ→G in the calculation of the damping kernel �. Using Eqs.
�16� and �22�, the time-local force �15� reads

Fe�x� =
	

2
� d�

2
f���TrN
�zA�x;��� , �28�

while the damping 
Eq. �17�� and fluctuation 
Eq. �19�� ker-
nels are

��t;�� = �̃
x�t�,0;�� ,

K�t;�� = �
nB��� + 1��̃
x�t�,x�t�;�� , �29�

with a generalized “dissipation function”

�̃�x,x�;�� =
	2

4�
� d��

2

f��� + �/2� − f��� − �/2��

� �
s=�

TrN
A�x;�� + s�/2��zA

��x�;�� − s�/2��z�

= �̃�x,x�;− ��

= �̃�x�,x;�� . �30�

For small 	, the x dependence in Eq. �29� can be neglected,
and we recover the fluctuation-dissipation theorem �21�. The
decomposition A=Aa+Ac implies that �=�a+�c and K
=Ka+Kc separate into contributions from the Andreev-level
states and from continuum states. Mixed terms involving
transitions between Andreev-level and continuum states turn
out to be always strongly suppressed in the adiabatic regime
due to the presence of an energy threshold �−Ea in the fer-
mionic spectrum. As a result, such terms can safely be
neglected.

At this point, we pause and summarize what we have
achieved so far. The total effective action of the oscillator
within the BO approximation is

S = −� dty
�−1ẍ − F�x� + �t

dt���t,t��ẋ�t���

+
i

2
� dtdt�y�t�K�t,t��y�t�� − i Tr lnǦ−1, �31�

where F�x�=−�x+Fe�x� is the total potential force. The
Wigner representation of the dissipation and fluctuation ker-
nels is

��t;�� = �
0

� d�


cos�����̃
x�t�,0;�� ,

K�t;�� = �
0

� d�

2
cos����� coth��/2T��̃
x�t�,x�t�;�� ,

�32�

with the generalized dissipation function �̃ in Eq. �30�.
Before proceeding with the solution of the above stochas-

tic problem, we briefly address the analytically tractable limit
���. While the resulting expressions are not used in the
full numerical solution in Sec. IV, they are useful to develop
intuition and to determine whether the underdamped vs over-
damped regime is realized, see Sec. III D. For ���, the
Andreev-level energy is1,26

Ea�x� = ��1 − T�x�sin2��/2� �33�

with the x-dependent effective transmission probability
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T�x� =
1

1 + �2�x�/�2 . �34�

The Andreev-level contribution to the fluctuation kernel
K�x�t� ;�� is then given by

Ka�x;�� =
	2

�2 �
n=0,�1

�n�x��
� − 2nEa�x�� . �35�

With the Fermi function nF���= �e�/T+1�−1, we use the aux-
iliary functions

�0�x� = nF
Ea�x��nF
− Ea�x��
1 − T�x��T3�x�

�
4�4

Ea
2�x�

sin4��/2� ,

��1�x� = �nF
�Ea�x���2T3�x�
�4 sin2 �

2Ea
2�x�

.

The zero-frequency peak in Ka�x ;�� is determined by quan-
tum fluctuations of the Andreev-level current37 when the re-
flectivity is finite, T�x��1. The continuum contribution to
the above kernels exhibits only very weak dependence on �
and can be evaluated by taking the �→0 limit. We find
Kc�x ;���T�c�x ;�� with �c�x ;����2	 /��2e−�/T. As a
function of �, both kernels �
x�t� ;�� and K
x�t� ;�� exhibit
a constant background due to the continuum states, respon-
sible for Ohmic dissipation.36 Superimposed on this Ohmic
part, we have the Andreev level �-type contributions. They
include a peak at zero frequency. We then turn back to the
full problem characterized by arbitrary ratio � /�.

B. Fokker-Planck equation in energy space

Following standard arguments,36 we can transform the ef-
fective action �31� to an equivalent Langevin equation. Using
a Hubbard-Stratonovich transformation,

e−yKy/2 =� D�e−�K−1�/2+i�y ,

we introduce the auxiliary field ��t�. Functional integration
over y then yields

Z =� DxD�e−�K−1�/2det�Ǧ−1���L
x,��� , �36�

which enforces the Langevin equation

L
x,�� =�−1ẍ − F�x� + �t

dt���t,t��ẋ�t�� − ��t� = 0

�37�

with Gaussian noise ��t�. The stochastic noise field has zero
mean and variance ��t���t���=K�t , t��. In what follows, we
consider the weak damping limit,36 where the damping force
��ẋ� is small compared to the potential force F�x�. In this
underdamped regime, the oscillator energy E varies slowly
on the timescale �−1. We quantify this condition in terms of
the system parameters in Sec. III D.

We proceed by writing a Langevin equation for the slow
energy variable E�t�, which is averaged in time over the
�energy-dependent� oscillator period TE. Technically, by mul-

tiplying the Langevin equation by ẋ and defining �̃= ẋ�, we
find

d

dt
� ẋ2

2�
+ U�x�� = − �t

dt���t,t��ẋ�t�ẋ�t�� + �̃�t� , �38�

where U�x� is an effective oscillator potential with F�x�
=−�xU�x�, and �̃�t��̃�t���=K�t , t��ẋ�t�ẋ�t��. The change of
the oscillator energy

E�t� = ẋ2/�2�� + U�x�

is thus determined by the work done by the damping force
−�ẋ and by the fluctuations. Averaging Eq. �38� over TE
yields a Langevin equation in energy space,

Ė�t� = − ��E� + �E�t�, �E�t��E�t��� = K�E���t − t�� ,

�39�

where ��E� determines the energy dissipation rate and K�E�
describes multiplicative �state-dependent� noise,

��E� = �
0

TE dt

TE
�t

dt���t,t��ẋ�t�ẋ�t�� ,

K�E� = �
0

TE dt

TE
� dt�K�t,t��ẋ�t�ẋ�t�� . �40�

The corresponding Fokker-Planck equation36 governing the
energy distribution function w�E , t� of the oscillator is

�tw�E,t� = �E���E�w�E,t� +
1

2
�E
K�E�w�E,t��� . �41�

A similar Fokker-Planck equation has been derived
previously9,16 for the normal-state case. However, the kernels
��t , t�� and K�t , t�� were approximated by time-local

���t− t��� expressions in Eq. �40�.

The stationary solution of Eq. �41� is given by the gener-
alized Boltzmann distribution,

w�E� = NK−1�E�exp�− �E dE�

Teff�E��
� , �42�

where Teff�E�=K�E� /2��E� is an effective energy-dependent
temperature and N a normalization constant.

In order to compute the fluctuation-dissipation coeffi-
cients �40�, we introduce a velocity-velocity correlation
function at energy E. For a periodic solution x=x�t�
=x�t+TE� of the undamped oscillator problem at given en-
ergy E, we take the correlator

QE�t;�� � ẋ�t + �/2�ẋ�t − �/2�	E = �
n=−�

�

QE,n�t�e−in�E�,

�43�

where QE,n=QE,n
� =QE,−n and �E=2 /TE. Using Eq. �32�, we

find

ADIABATIC POLARON DYNAMICS AND JOSEPHSON… PHYSICAL REVIEW B 81, 104508 �2010�

104508-5



��E� = �
0

TE dt

2TE
�

n

QE,n�t��̃
x�t�,0;n�E� , �44�

K�E� = �
0

TE dt

2TE
�

n

QE,n�t�

� n�E coth�n�E/2T��̃
x�t�,x�t�;n�E� . �45�

While the above equations are straightforward to solve
numerically in the case of a single-well potential, it is also
possible to encounter bistable behavior as reported for the
normal-state case.16 We will discuss the transition from a
single well to a double well potential U�x� in detail in Sec.
IV. For the case of a double-well potential U�x� with barrier
height Eb, there are two solutions w1,2�E� defined within each
well region �E�Eb�, and a third solution w3�E� applicable
for energies above the barrier �E�Eb�. These solutions have
to be matched by boundary conditions.9,16 In particular, con-
tinuity imposes w1�Eb�+w2�Eb�=w3�Eb�, and the transition
probability to each well at the separatrix should be equal,
w1�Eb�=w2�Eb�.

C. Current

In the adiabatic approximation, the Josephson current is
given by29

I = − � sin��/2�� d�

2i
f����� TrN
�xGR�x;���osc� ,

�46�

which involves time averaging over an oscillator period TE
for given E, followed by an average over the oscillator en-
ergy using the stationary distribution �42�,

Ǧ�x;���osc =� dEw�E��
0

TE dt

TE

� �� ẋ2

2�
+ U�x� − E�Ǧ
x�t�;�� . �47�

Analytic continuation then yields for the Josephson current

I��� = − 2T�2 sin��� �
�n�0

�̃�n

2 D−1�x;i�n��osc �48�

with fermion Matsubara frequencies �n= �2n+1�T �integer
n�. Equation �24� yields �̃�=�i�=� /��2+�2, and a similar
result is obtained for D from Eq. �25�.

D. Underdamped regime

In practice, the physically most relevant parameter regime
corresponds to underdamped motion of the oscillator. This
can be shown by an estimate for ��E� given next. In Sec. IV,
we also show the full numerical result for ��E� to self-
consistently verify that one indeed stays in the weak-
damping limit. Our analytical estimates were obtained for
� /��1.

For given energy E, the Andreev-level contribution �a�E�
is nonzero only if the oscillator path x=xE�t� passes through
x=0. We find

�a�E�
�2 � ga

�E/� �49�

with the dimensionless number

ga = nF�E0�nF�− E0�
	�0

TE0
�T�0�� sin��/2�

�
�2

,

where E0=Ea�0� denotes the bare Andreev-level energy. This
estimate is obtained for zero Andreev-level width �a=0 and
by neglecting the �E-dependent� renormalization of the oscil-
lator frequency. �In the numerical analysis below, we use
�a=0.01�.�

On the other hand, the continuum contribution to the
damping kernel � is estimated by

�c�E�
�2 �

TE

��
�2	

�
�2

e−�/T. �50�

Note that the two contributions scale differently with E. The
underdamped regime is realized when ��E� /�2�1. It is
straightforward to observe from the above expressions that
for 	 �, this condition is always fulfilled. The under-
damped regime may cover even significantly larger electron-
vibration couplings 	.

IV. RESULTS AND DISCUSSION

Let us now describe results obtained from this semiclas-
sical approach. We here only consider parameter sets consis-
tent with the assumption of underdamped adiabatic motion
of the oscillator, see Sec. III D. In addition, we shall assume
good coupling between dot and electrodes, � /��1, consis-
tent with the fact that we neglect Coulomb interaction effects
on the dot. Note that the opposite case � /��1 was studied
in Ref. 10.

The numerical calculation goes as follows. We first com-
pute the effective potential U�x� according to Eq. �28�. Hav-
ing determined the effective potential U�x�, the calculation
proceeds by computing QE,n as defined in Eq. �43�. This
involves a numerical solution of the classical equations of
motion in the potential U�x�, which are always periodic �the
oscillation period TE is thereby obtained numerically�. Sub-
sequently we compute the damping kernel ��E� using Eq.
�44�, and the fluctuation kernel K�E� from Eq. �45�. These
kernels then result in the probability distribution w�E� ac-
cording to Eq. �42�, and finally the Josephson current-phase
relation is obtained from Eq. �48�.

A. Single-well case

Figures 1–3 show our numerical results for the following
set of system parameters: �=8�, �0=−0.1�, �=0.05�, 	
=0.5�, with temperature put to T=0.2�. For this parameter
set, we are in the weak-coupling �underdamped� regime,
where the above formalism can be safely applied. The effec-
tive potential U�x� then has a single minimum for all values
of the phase difference �, see Fig. 2 for �=0 and �=0.8.
This single-well behavior of the effective oscillator potential
surface can be rationalized by noting that the electron force
Fe�x� is here mainly determined by the continuum contribu-
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tion, which in turn is almost insensitive to the phase differ-
ence �. Interestingly, as seen in Fig. 1, the Josephson current
is basically not modified, with only a very small negative
interaction correction even for a relatively strong electron-
vibration coupling 	. The weak sensitivity of the current to 	
comes from a strong localization of the oscillator near the
bottom of the effective potential U�x� at x=0, see Fig. 2.

The corresponding distribution functions w�E� for �=0
and �=0.8 are shown in Fig. 3. The observed singular
behavior for small energies E is mainly determined by the
factor K−1�E� in Eq. �42�. For instance, for the continuum
contribution, one obtains Kc�E��2T�c�E��E, and hence we
find the scaling w�E��1 /E. The approximately linear law
K�E��E as E→0 stays also valid when including the
Andreev-level contribution. Indeed, from Eq. �45�, we find
K�E��ET�̃�x ,x�, with the average over phase space �at
given energy E� defined as �̃�x ,x�= �dxp�x��̃�x,x�

�dxp�x� . Note that

�dxp�x��2E /�, while �̃�x ,x� is only weakly dependent
on E. We thus conclude again that K�E��E.

For small �, the main contribution to the oscillator damp-
ing comes from the continuum states, while for intermediate

� the Andreev-level contribution starts to dominate. This is
explicitly seen in the two upper insets in Fig. 3, where ��E�
is shown for �=0 and �=0.8, respectively. For �=0, we
find a linear E dependence, which turns into a square-root
dependence for �=0.8, in accordance with Eqs. �50� and
�49�, respectively. Furthermore, the bottom right inset of Fig.
3 shows that the effective temperature Teff�E�=K�E� /2��E�
is greatly enhanced for �=0.8 due to Andreev-level current
fluctuations. These fluctuations lead to stronger localization
of the oscillator at low E. For �=0, we find Teff�E��T, as
expected when the continuum contributions dominate. Nev-
ertheless, even then the oscillator distribution function w�E�
strongly deviates from the classical Boltzmann distribution
of a free oscillator �shown in Fig. 3 for comparison�. This
difference can be traced to the prefactor K−1�E� in Eq. �42�.

B. Crossover to the double-well potential

Let us next analyze a second parameter set, where we will
encounter a nontrivial double-well behavior for the effective
oscillator potential U�x�. The transition from single-to
double-well behavior is here induced by a variation in the
phase difference �, and one may therefore affect the confor-
mational state of the molecule in a dissipationless manner in
such a setup. The parameter set is given by �=0.02�, �
=4.8�, �0=−0.15�, with electron-vibration coupling
strength 	=0.4�. Moreover, the temperature has been set to
T=0.25�. As illustrated in Fig. 4, we indeed find a transition
between a single- and a double-well potential induced by a
variation in �. Similar transitions �with associated bistabili-
ties� were reported for a two-level system instead of the
oscillator,31 and for the nonequilibrium normal-state local
Holstein model.16
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FIG. 1. �Color online� Josephson current in units of e� /� vs
superconducting phase difference � for the interacting case
�	=0.5�: blue circles� and for 	=0 �dashed curve�. The system
parameters �in units of �� are �=8, �0=−0.1, �=0.05, with tem-
perature T=0.2. Inset: interaction correction to the current, �Iph

= I�	�− I�	=0�, vs phase difference � for the data in the main panel.
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FIG. 2. �Color online� Effective potential U�x� vs dimensionless
oscillator coordinate x for �=0 �black dashed� and �=0.8 �blue
solid curve�. System parameters are as in Fig. 1. Inset: Andreev-
level spectrum vs x for the two quoted values of �.
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FIG. 3. �Color online� Energy distribution function �42� for �
=0 �black dashed� and �=0.8 �blue solid curve�, using the same
parameter set as in Fig. 1. The dotted curve shows a Boltzmann
distribution for temperature T. Insets: damping kernel ��E� vs en-
ergy E for �=0 �top left� and for �=0.8 �top right�. The corre-
sponding effective temperature Teff=K�E� /2��E� is shown as a
function of E for these two values of � in the bottom right inset:
black filled circles are for �=0, and blue open circles are for �
=0.8.
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Although the continuum contribution to the electron force
and thus to the effective potential U�x� still plays an overall
dominant role, it is almost insensitive to variations of �. The
�-tunable transition to a double-well potential shown in Fig.
4 is therefore caused by Andreev-level contributions to Fe�x�.
We note that the shape of U�x� is also sensitive to tempera-
ture through thermal occupation factors of the Andreev lev-
els. The dynamical frequency �E for the oscillator motion in
the effective potential U�x� can be strongly renormalized
away from the bare oscillator frequency �. For the param-
eters in Fig. 4, we typically find �E�0.5 �. The x depen-
dence of the Andreev-level spectrum Ea�x� in the adiabatic
limit, i.e., with instantaneous x=x�t�, is shown for several
phases � in the inset of Fig. 4. Note that this spectrum is
rather different from the featureless Andreev-level spectrum
for the first parameter set, see inset of Fig. 2.

Figure 5 shows the current-phase relation for this param-
eter set. The Josephson current again exhibits an overall sup-
pression due to the electron-vibration coupling as reported
previously.28–30,39 The suppression is now more pronounced
than in Fig. 1, but still remains moderate. Moreover, the
current-phase relation exhibits small yet characteristic cusps
in the crossover region between the single- and double-well
situation ���0.6 to 0.7�, where Andreev-level noise
�I2��� is strongly enhanced.37,38 However, the effect of
switching between the two potential wells does not have a
dramatic influence on the current-phase relation because the
magnitude of the current is basically the same in each well:
the coordinates x1,2 of two local minima are almost symmet-
ric with respect to x=0. Indeed, we find x1�−x2 and hence
��x1��	x1�−��x2� for strong coupling 	 and small �0.

Figures 6–8 then show the resulting energy distribution
function w�E� for the three values of the phase difference �
considered in Fig. 4, respectively. Despite of the enhanced
effective temperature Teff�E� as compared to T, we find again
that w�E� strongly deviates from a classical �Boltzmann� dis-
tribution function. Interestingly, for energies E below the
separatrix region, w�E� is well approximated by an effective

Bose-Einstein function. Indeed, we find that for E�T, both
w�E� and the Bose-Einstein function nB�E� obey the same
equation. As a result, within this region, we find w�E�
�1 /E instead of the Boltzmann dependence �e−E/T, imply-
ing a much stronger localization of the oscillator’s motion
near the bottom of the deeper well. Moreover, the damping
��E� is determined by both the continuum and Andreev-level
contributions, while the diffusion coefficient K�E� is essen-
tially determined by the Andreev-level contribution.

Finally, we address the parameter regime where the de-
scribed switching from single-to double-well behavior in
U�x� is found, see Fig. 9. For simplicity, we consider a fixed
vibrational frequency, �=0.02�. For given system param-
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FIG. 4. �Color online� Effective potential U�x� vs x for �=0
�black dashed�, �=0.65 �red dotted�, and �=0.975 �blue solid
curve�. System parameters �with �=1� are �=4.8, �0=−0.15, �
=0.02, 	=0.4, T=0.25. Inset: Andreev-level spectrum vs x for
these three values of �.
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eters, when increasing 	, we find from our numerical scheme
that double-well behavior starts to appear at 	=	c1 for �
=. When further increasing 	, the double-well behavior
extends to a region with �� as well. A second scale 	c2
�	c1 is then defined such that for 	!	c2, the double-well
behavior is found for all �. In order to determine 	c1,2, it is
therefore sufficient to probe for the single-to-double-well
transition at the phase differences �= and �=0. The tran-
sition region between 	c1 and 	c2 is in fact rather narrow, cf.
the inset of Fig. 9. Note that the location of the switching
transition is quite sensitive to temperature. In particular, with
increasing T, the boundary 	c1,2 shifts to bigger 	 values.

V. CONCLUSIONS

We have shown that the adiabatic limit allows to make
analytical progress for an important model of molecular elec-
tronics, the superconducting local Holstein model. It de-
scribes a spinless resonant electronic level coupled to a

single boson �vibration mode�, where the resonant level is
coupled to two superconducting reservoirs with a phase dif-
ference �. The adiabatic limit is realized when the oscillator
frequency � is smaller than both the superconducting gap �
and the dot-to-lead hybridization energy scale �. This regime
allows for a semiclassical Born-Oppenheimer-type treatment,
where the electronic degrees of freedom can be integrated
out and give rise to an effective oscillator potential U�x�.
Moreover, they cause dissipative damping and a stochastic
noise force. The most relevant parameter regime turns out to
be the underdamped one, where it is appropriate to consider
diffusion in energy space, and the effects of damping 
��E��
and noise 
K�E�� can be taken into account within a standard
Fokker-Planck scheme. The resulting distribution function
w�E� solving the Fokker-Planck equation can be obtained
numerically with moderate effort, and allows us to obtain
quantitative results within a controlled approximation for
��min�� ,��.

The method has been applied to a calculation of the Jo-
sephson current-phase relation I���. While the resulting cor-
rections to the Josephson current are generally small in mag-
nitude even for strong electron-vibration coupling 	, they
still cause some features when the effective potential U�x�
changes character. In particular, it is possible to induce a
change from a single- to a double-well potential surface by
variation in the phase difference �. Near the transition point,
we predict enhanced Andreev-level noise. Similar transitions
from single- to double-well effective potentials were also
reported for the normal-state case,16 but for a nonequilibrium
situation where a finite bias voltage is applied and dissipation
is unavoidable. In our equilibrium case, the transition is in-
duced by a variation in the superconducting phase and there-
fore is dissipationless. However, the effect of switching from
one to two minima in U�x� on the Josephson current I��� is
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over regime between single- and double-well potential�. In the in-
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much weaker here, which can be rationalized by noting that
the two minima are located symmetrically and the Josephson
current is essentially identical when the oscillator is close to
a given minimum. It is also worth mentioning that the Jo-
sephson current seems always to be suppressed by the cou-
pling to the oscillator, independent of the normal-state trans-
mission probability through the junction, i.e., the interaction
correction is negative, in contrast to what happens in the
normal state.13 This conclusion has also been reached via
perturbation theory in the electron-vibration coupling 	 for
the Josephson current.29,39

A quantity that is much more sensitive to the existence of
two minima in the effective oscillator potential U�x� is the

phonon distribution function. As we have discussed in Sec.
IV, in the double-well case, the phonon distribution function
has a characteristic two-peak structure and displays strong
phonon localization. It may be possible to access this quan-
tity experimentally via resonant coherent phonon spectros-
copy techniques,40,41 and thereby provide clear signatures of
the predicted crossover from single-to double-well behavior.
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